Abstract
ABSTRACTClinically and biologically, rare DNA sequence variants are significant and informative. However, existing detection technologies are either complex in workflow, or restricted in the limit of detection (LoD), or do not allow for multiplexing. Blocker displacement amplification (BDA) method can stably and effectively detect and enrich multiple rare variants with LoD around 0.1% variant allele fraction (VAF). Nonetheless, the detailed mutation information has to be identified by additional sequencing technologies. Here, we present allele-specific BDA (As-BDA), a method combining BDA with allele-specific TaqMan (As-TaqMan) probes for effective variant enrichment and simultaneous SNV profiling. We demonstrated that As-BDA could detect mutations down to 0.01% VAF. Further, As-BDA could detect up to four mutations with low to 0.1% VAF per reaction using only 15 ng DNA input. The median error of As-BDA in VAF determination is approximately 9.1%. Comparison experiments using As-BDA and droplet digital PCR (ddPCR) on peripheral blood mononuclear cell (PBMC) clinical samples showed 100% concordance for samples with mutations at ≥ 0.1% VAF. Hence, we have shown that As-BDA can achieve simultaneous enrichment and identification of multiple targeted mutations within the same reaction with high clinical sensitivity and specificity, thus helpful for clinical diagnosis.
Publisher
Cold Spring Harbor Laboratory