Quantifying microbial associations of dissolved organic matter under global change

Author:

Hu Ang,Choi Mira,Tanentzap Andrew J.,Liu Jinfu,Jang Kyoung-Soon,Lennon Jay T.,Liu Yongqin,Soininen Janne,Lu Xiancai,Zhang Yunlin,Shen Ji,Wang Jianjun

Abstract

AbstractMicrobes play a critical role in regulating the size, composition, and turnover of dissolved organic matter (DOM), which is one of the largest pools of carbon in aquatic ecosystems. Global change may alter DOM-microbe associations with implications for biogeochemical cycles, although disentangling these complex interactions remains a major challenge. Here we develop a framework called Energy-Diversity-Trait integrative Analysis (EDTiA) to examine the associations between DOM and bacteria along temperature and nutrient gradients in a manipulative field experiment on mountainsides in contrasting subarctic and subtropical climates. In both study regions, the chemical composition of DOM correlated with bacterial communities, and was primarily controlled by nutrients and to a lesser degree by temperature. At a molecular-level, DOM-bacteria associations depended strongly on the molecular traits of DOM, with negative associations indicative of decomposition as molecules are more biolabile. Using bipartite networks, we further demonstrated that negative associations were more specialized than positive associations indicative of DOM production. Nutrient enrichment promoted specialization of positive associations, but decreased specialization of negative associations particularly at warmer temperatures in subtropical climate. These global change drivers influenced specialization of negative associations most strongly via molecular traits, while both molecular traits and bacterial diversity similarly affected positive associations. Together, our framework provides a quantitative approach to understand DOM-microbe associations and wider carbon cycling across scales under global change.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3