Modeling Coronavirus Spike Protein Dynamics: Implications for Immunogenicity and Immune Escape

Author:

Kunkel G.,Madani M.,White S. J.,Verardi P. H.,Tarakanova A.

Abstract

ABSTRACTThe ongoing COVID-19 pandemic is a global public health emergency requiring urgent development of efficacious vaccines. While concentrated research efforts are underway to develop antibody-based vaccines that would neutralize SARS-CoV-2, and several first-generation vaccine candidates are currently in Phase III clinical trials or have received emergency use authorization, it is forecasted that COVID-19 will become an endemic disease requiring second-generation vaccines. The SARS-CoV-2 surface Spike (S) glycoprotein represents a prime target for vaccine development because antibodies that block viral attachment and entry, i.e. neutralizing antibodies, bind almost exclusively to the receptor binding domain (RBD). Here, we develop computational models for a large subset of S proteins associated with SARS-CoV-2, implemented through coarse-grained elastic network models and normal mode analysis. We then analyze local protein domain dynamics of the S protein systems and their thermal stability to characterize structural and dynamical variability among them. These results are compared against existing experimental data, and used to elucidate the impact and mechanisms of SARS-CoV-2 S protein mutations and their associated antibody binding behavior. We construct a SARS-CoV-2 antigenic map and offer predictions about the neutralization capabilities of antibody and S mutant combinations based on protein dynamic signatures. We then compare SARS-CoV-2 S protein dynamics to SARS-CoV and MERS-CoV S proteins to investigate differing antibody binding and cellular fusion mechanisms that may explain the high transmissibility of SARS-CoV-2. The outbreaks associated with SARS-CoV, MERS-CoV, and SARS-CoV-2 over the last two decades suggest that the threat presented by coronaviruses is ever-changing and long-term. Our results provide insights into the dynamics-driven mechanisms of immunogenicity associated with coronavirus S proteins, and present a new approach to characterize and screen potential mutant candidates for immunogen design, as well as to characterize emerging natural variants that may escape vaccine-induced antibody responses.STATEMENT OF SIGNIFICANCEWe present novel dynamic mechanisms of coronavirus S proteins that encode antibody binding and cellular fusion properties. These mechanisms may offer an explanation for the widespread nature of SARS-CoV-2 and more limited spread of SARS-CoV and MERS-CoV. A comprehensive computational characterization of SARS-CoV-2 S protein structures and dynamics provides insights into structural and thermal stability associated with a variety of S protein mutants. These findings allow us to make recommendations about the future mutant design of SARS-CoV-2 S protein variants that are optimized to elicit neutralizing antibodies, resist structural rearrangements that aid cellular fusion, and are thermally stabilized. The integrated computational approach can be applied to optimize vaccine immunogen design and predict escape of vaccine-induced antibody responses by SARS-CoV-2 variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3