Heterozygous loss of ZBTB38 leads to early embryonic lethality in mice via suppressing Nanog and Sox2

Author:

Nishio Miki,Matsuura Takuya,Hibi Shunya,Ohta Shiomi,Oka Chio,Sasai Noriaki,Ishida Yasumasa,Matsuda Eishou

Abstract

ABSTRACTMammalian DNA methylation is an epigenetic modification which is involved in various biological processes, including gene expression regulation. In mice, methyltransferases are responsible for DNA methylation, which are critical for early embryogenesis. However, the significance of methyl-CpG binding proteins (MBPs) that bind methylated CpG remains largely unknown. We previously demonstrated that ZBTB38/CIBZ-a zinc finger type of MBP-is required for ES cell proliferation by positively regulating Nanog expression. However, the physiological function of ZBTB38 remains unclear. In this study, we generated conditional ZBTB38 knockout mice using Cre-loxP technology. Unexpectedly, our results showed that germline loss of the ZBTB38 single allele resulted in decreased epiblast cell proliferation and increased apoptosis shortly after implantation, leading to early embryonic lethality. We found that heterozygous loss of ZBTB38 reduced the expression of Nanog, Sox2, and the genes responsible for epiblast proliferation, differentiation, and cell viability. Despite this lethal phenotype, ZBTB38 is dispensable for ES cell establishment and identity. Together, these findings indicate that ZBTB38 is essential for early embryonic development, providing new insights into the roles of MBP in implantation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3