Abstract
AbstractThe effective population size (Ne) is a key parameter to quantify the magnitude of genetic drift and inbreeding, with important implications in human evolution. The increasing availability of high-density genetic markers allows the estimation of historical changes in Ne across time using measures of genome diversity or linkage disequilibrium between markers. Selection is expected to reduce diversity and Ne, and this reduction is modulated by the heterogeneity of the genome in terms of recombination rate. Here we investigate by computer simulations the consequences of selection (both positive and negative) and of recombination rate heterogeneity in the estimation of historical Ne. We also investigate the relationship between diversity parameters and Ne across the different regions of the genome using human marker data. We show that the estimates of historical Ne obtained from linkage disequilibrium between markers (NeLD) are virtually unaffected by selection. In contrast, those estimates obtained by coalescence mutation-recombination-based methods can be strongly affected by it, what could have important consequences for the estimation of human demography. The simulation results are supported by the analysis of human data. The estimates of NeLD obtained for particular genomic regions do not correlate with recombination rate, nucleotide diversity, polymorphism, background selection statistic, minor allele frequency of SNPs, loss of function and missense variants and gene density. This suggests that NeLD measures are merely indicative of demographic changes in population size across generations.Author summaryThe inference of the demographic history of populations is of great relevance in evolutionary biology. This inference can be made from genomic data using coalescence methods or linkage disequilibrium methods. However, the assessment of these methods is usually made assuming neutrality (absence of selection). Here we show by computer simulations and analyses of human data that the estimates of historical effective population size obtained from linkage disequilibrium between markers are unaffected by natural selection, either positive or negative. In contrast, estimates obtained by coalescence mutation-recombination-based methods can be strongly affected by it, which could have important consequences for recent estimations of human demography. Thus, only linkage disequilibrium methods appear to provide unbiased estimates of the population census size.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献