Highly sensitive genetically-encoded sensors for population and subcellular imaging of cAMP in vivo

Author:

Massengill Crystian IORCID,Bayless-Edwards LandonORCID,Ceballos Cesar CORCID,Cebul Elizabeth RORCID,Qin Maozhen,Whorton Matthew R,Ye BingORCID,Mao TianyiORCID,Zhong HainingORCID

Abstract

AbstractCyclic adenosine monophosphate (cAMP) integrates information from diverse G protein-coupled receptors, such as neuromodulator receptors, to regulate pivotal biological processes in a cellular- and subcellular-specific manner. However, in vivo cellular-resolution imaging of cAMP dynamics in neurons has not been demonstrated. Here, we screen existing genetically-encoded cAMP sensors, and further develop the best performer to derive three improved variants, called cAMPFIREs. These sensors exhibit up to ten-fold increased sensitivity to cAMP and a corrected, cytosolic distribution. cAMPFIREs are compatible with both ratiometric and fluorescence lifetime imaging, and can detect cAMP dynamics elicited by norepinephrine at physiologically-relevant, nanomolar concentrations. Imaging of cAMPFIREs in awake mice reveals tonic levels of cAMP in cortical neurons that are associated with wakefulness, and are differentially regulated in different subcellular compartments. Furthermore, enforced locomotion elicits neuron-specific, bidirectional cAMP dynamics, in part, mediated by norepinephrine. Finally, cAMPFIREs also function in Drosophila, suggesting that they have broad applicability for studying intracellular signaling in vivo.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3