Abstract
AbstractMotor systems must continuously adapt their output to maintain a desired trajectory. While the spinal circuits underlying rhythmic locomotion are well described, little is known about how the network modulates its output strength. A major challenge has been the difficulty of recording from spinal neurons during behavior. Here, we use voltage imaging to map the membrane potential of glutamatergic neurons throughout the spinal cord of the larval zebrafish during fictive swimming in a virtual environment. We mapped the spiking, subthreshold dynamics, relative timing, and sub-cellular electrical propagation across large populations of simultaneously recorded cells. We validated the approach by confirming properties of known sub-types, and we characterized a yet undescribed sub-population of tonic-spiking ventral V3 neurons whose spike rate correlated with swimming strength and bout length. Optogenetic activation of V3 neurons led to stronger swimming and longer bouts but did not affect tail-beat frequency. Genetic ablation of V3 neurons led to reduced locomotor adaptation. The power of voltage imaging allowed us to identify V3 neurons as a critical driver of locomotor adaptation in zebrafish.
Publisher
Cold Spring Harbor Laboratory