Soma and Neurite Density MRI (SANDI) of the in-vivo mouse brain

Author:

Ianuş AndradaORCID,Carvalho Joana,Fernandes Francisca F.,Cruz Renata,Chavarrias Cristina,Palombo Marco,Shemesh Noam

Abstract

AbstractDiffusion MRI (dMRI) provides unique insights into the neural tissue milieu by probing interaction of diffusing molecules and tissue microstructure. Most dMRI techniques focus on white matter tissues (WM) due to the relatively simpler modelling of diffusion in the more organized tracts; however, interest is growing in gray matter characterisations. The Soma and Neurite Density MRI (SANDI) methodology harnesses a model incorporating water diffusion in spherical objects (assumed to be associated with cell bodies) and in impermeable “sticks” (representing neurites), which potentially enables the characterisation of cellular and neurite densities. Recognising the importance of rodents in animal models of development, aging, plasticity, and disease, we here sought to develop SANDI for preclinical imaging and provide a validation of the methodology by comparing its metrics with the Allen mouse brain atlas. SANDI was implemented on a 9.4T scanner equipped with a cryogenic coil, and experiments were carried out on N=6 mice. Pixelwise, ROI-based, and atlas comparisons were performed, and results were also compared to more standard Diffusion Kurtosis MRI (DKI) metrics. We further investigated effects of different pre-processing pipelines, specifically the comparison of magnitude and real-valued data, as well as different acceleration factors. Our findings reveal excellent reproducibility of the SANDI parameters, including the sphere and stick fraction as well as sphere size. More strikingly, we find a very good rank correlation between SANDI-driven soma fraction and Allen brain atlas contrast (which represents the cellular density in the mouse brain). Although some DKI parameters (FA, MD) correlated with some SANDI parameters in some ROIs, they did not correlate nearly as well as SANDI parameters with the Allen atlas, suggesting a much more specific nature of the SANDI parameters. We conclude that SANDI is a viable preclinical MRI technique that can greatly contribute to research on brain tissue microstructure.

Publisher

Cold Spring Harbor Laboratory

Reference93 articles.

1. Imaging brain microstructure with diffusion MRI: practicality and applications;NMR Biomed,2017

2. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation

3. Cassey, B.J. , et al., Imaging the developing brain: what have we learned about cognitive development? TRENDS in Cognitive Sciences, 2005. 9(3).

4. Plasticity in gray and white: neuroimaging changes in brain structure during learning

5. Neuronal Changes in Normal Human Aging and Alzheimer's Disease

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3