Predicting epitopes Based on TCR sequence using an embedding deep neural network artificial intelligence approach

Author:

Kubick NorwinORCID,Klimovich Pavel,Sacharczuk Mariusz,Mickael Michel-Edwar

Abstract

AbstractT cells receptors are fundamental in recognizing antigens and mediating an appropriate specific immune response against them. Today TCR sequencing has contributed to forming a large repertoire for different immune-associated pathologies. However, predicting epitopes based on TCR sequences has not been satisfactory achieved. We formed a deep neural network using a combination of an embedding autoencoder and selu and relu layers to predict epitopes based on TCR TCR β-chain CDR3. We trained our model using the VDJ database (VDJdb) and validated it using the manually curated catalog of pathology-associated T cell receptor sequences (McPAS-TCR). We used various metrics to measure the accuracy of our tool. We found that our tool can achieve an accuracy of 98 %. Overall our approach presents a step toward identifying microbes crosslinking epitopes that could be playing an important role in various immune diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3