Toxoplasma infection alters dopamine-sensitive behaviors and host gene expression patterns associated with neuropsychiatric disease

Author:

Cromar Graham L.,Epp Jonathan,Popovic Ana,Gu Yusing,Ha Violet,Walters Brandon,St. Pierre James,Xiong Xuejian,Howland JohnORCID,Josselyn Sheena,Parkinson JohnORCID,Frankland Paul W.

Abstract

ABSTRACTToxoplasma gondii is a single celled parasite thought to infect 1 in 3 worldwide. During chronic infection, T. gondii can migrate to the brain where it promotes low-grade neuroinflammation with the capacity to induce changes in brain morphology and behavior. Consequently, infection with T. gondii has been linked with a number of neurocognitive disorders including schizophrenia (SZ), dementia, and Parkinson’s disease. Beyond neuroinflammation, infection with T. gondii can modulate the production of neurotransmitters, such as dopamine. To further dissect these pathways and examine the impact of altered dopaminergic sensitivity in T. gondii-infected mice on both behavior and gene expression, we developed a novel mouse model, based on stimulant-induced (cocaine) hyperactivity. Employing this model, we found that infection with T. gondii did not alter fear behavior but did impact motor activity and neuropsychiatric-related behaviurs. While both behaviors may help reduce predator avoidance, consistent with previous studies, the latter finding is reminiscent of neurocognitive disorders. Applying RNASeq to two relevant brain regions, striatum and hippocampus, we identified a broad upregulation of immune responses. However, we also noted significant associations with more meaningful neurologically relevant terms were masked due to the sheer number of terms incorporated in multiple testing correction. We therefore performed a more focused analysis using a curated set of neurologically relevant terms revealing significant associations across multiple pathways. We also found that T. gondii and cocaine treatments impacted the expression of similar functional pathways in the hippocampus and striatum although, as indicated by the low overlap among differentially expressed genes, largely via different proteins. Furthermore, while most differentially expressed genes reacted to a single condition and were mostly upregulated, we identified gene expression patterns indicating unexpected interactions between T. gondii infection and cocaine exposure. These include sets of genes which responded to cocaine exposure but not upon cocaine exposure in the context of T. gondii infection, suggestive of a neuroprotective effect advantageous to parasite persistence. Given its ability to uncover such complex relationships, we propose this novel model offers a new perspective to dissect the molecular pathways by which T. gondii infection contributes to neuropsychiatric disorders such as schizophrenia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3