The diazepam binding inhibitor’s modulation of the GABA-A receptor is subunit-dependent

Author:

Borchardt Jennifer S.ORCID,Blecker Lucas M.,Satyshur Kenneth A.,Czajkowski CynthiaORCID

Abstract

AbstractFirst synthesized in the 1950s, benzodiazepines are widely prescribed drugs that exert their anxiolytic, sedative and anticonvulsant actions by binding to GABA-A receptors, the main inhibitory ligand-gated ion channel in the brain. Scientists have long theorized that there exists an endogenous benzodiazepine, or endozepine, in the brain. While there is indirect evidence suggesting a peptide, the diazepam binding inhibitor, is capable of modulating the GABA-A receptor, direct evidence of the modulatory effects of the diazepam binding inhibitor is limited.Here we take a reductionist approach to understand how purified diazepam binding inhibitor interacts with and affects GABA-A receptor activity. We used two-electrode voltage clamp electrophysiology to study how the effects of diazepam binding inhibitor vary with GABA-A receptor subunit composition, and found that GABA-evoked currents from α3-containing GABA-A receptors are weakly inhibited by the diazepam binding inhibitor, while currents from α5-containing receptors are positively modulated. We also used in silico protein-protein docking to visualize potential diazepam binding inhibitor/GABA-A receptor interactions that revealed diazepam binding inhibitor bound at the benzodiazepine α/γ binding site interface, which provides a structural framework for understanding diazepam binding inhibitor effects on GABA-A receptors. Our results provide novel insights into mechanisms underlying how the diazepam binding inhibitor modulates GABA-mediated inhibition in the brain.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. Organization WECotSoEDWH. The selection of essential drugs : report of a WHO expert committee [meeting held in Geneva from 17 to 21 October 1977]. Geneva: 1977.

2. Modulation of GABAA Receptors in the Treatment of Epilepsy

3. GABA Receptors and the Pharmacology of Sleep

4. An Emerging Circuit Pharmacology of GABAA Receptors

5. The rise of a new GABA pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3