The utility of a closed breeding colony of Peromyscus leucopus for dissecting complex traits

Author:

Long Phillip N,Cook Vanessa J,Majumder Arundhati,Barbour Alan G,Long Anthony D

Abstract

ABSTRACTAlthough Peromyscus leucopus (deermouse) is not considered a genetic model system, its genus is well suited for addressing several questions of biologist interest, including the genetic bases of longevity, behavior, physiology, adaptation, and it’s ability to serve as a disease vector. Here we explore a diversity outbred approach for dissecting complex traits in Peromyscus leucopus, a non-traditional genetic model system. We take advantage of a closed colony of deer-mice founded from 38 individuals between 1982 and 1985 and subsequently maintained for 35+ years (∼40-60 generations). From 405 low-pass (∼1X) short-read sequenced deermice we accurately imputed genotypes at 17,751,882 SNPs. Conditional on observed genotypes for a subset of 297 individuals, simulations were conducted in which a QTL contributes 5% to a complex trait under three different genetic models. The power of either a haplotype- or marker-based statistical test was estimated to be 15-25% to detect the hidden QTL. Although modest, this power estimate is consistent with that of DO/HS mice and rat experiments for an experiment with ∼300 individuals. This limitation in QTL detection is mostly associated with the stringent significance threshold required to hold the genome-wide false positive rate low, as in all cases we observe considerable linkage signal at the location of simulated QTL, suggesting a larger panel would exhibit greater power. For the subset of cases where a QTL was detected, localization ability appeared very desirable at ∼1-2Mb. We finally carried out a GWAS on a demonstration trait, bleeding time. No tests exceeded the threshold for genome-wide significance, but one of four suggestive regions co-localizes with Von Willebrand factor. Our work suggests that complex traits can be dissected in founders-unknown P. leucopus colony mice in much the same manner as founders-known DO/HS mice and rats, with genotypes obtained from low pass sequencing data. Our results further suggest that the DO/HS approach can be powerfully extended to any system in which a founders-unknown closed colony has been maintained for several dozen generations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3