The sodium leak channel NALCN encodes the major background sodium ion conductance in murine anterior pituitary cells

Author:

Belal MarziyehORCID,Mucha Mariusz,Monteil Arnaud,Winyard Paul G,Pawlak Robert,Walker Jamie J.,Tabak Joel,Belle Mino D C

Abstract

AbstractThe pituitary gland, the so-called “master gland” produces and secretes a variety of hormones essential for regulating growth and development, metabolic homeostasis, reproduction and the stress response. The interplay between the brain and peripheral feedback signals controls hormone secretion from pituitary cells by regulating the properties of ion channels, and in turn, cell excitability. Endocrine anterior pituitary cells fire spontaneous action potentials to regulate their intracellular calcium level and eventually hormone secretion. However, the molecular identity of the non-selective cationic leak channel involved in maintaining the resting membrane potential at the firing threshold remained unknown. Here, we show that the sodium leak channel NALCN, known to modulate neuronal excitability, also regulates excitability in murine anterior pituitary cells. Using viral transduction combined with electrophysiology and calcium imaging we show that NALCN encodes the major Na+ leak conductance which tunes the resting membrane potential close to firing threshold to sustain the intrinsically-regulated firing in endocrine pituitary cells. Genetic interruption of NALCN channel activity, hyperpolarised the membrane potential drastically and stopped the firing activity and consequently abolished the cytosolic calcium oscillations. Moreover, we found that NALCN conductance forms a very small fraction of the total cell conductance yet has a profound impact on modulating pituitary cell excitability. Taken together, our results demonstrate that, NALCN is a crucial regulator of pituitary cell excitability and supports spontaneous firing activity to consequently regulate hormonal secretion. Our results suggest that receptor-mediated and potentially circadian changes in NALCN conductance can powerfully affect pituitary activity and hormone secretion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3