Abstract
ABSTRACTTissue-specific differentiation is driven by specialized transcriptional networks. Pancreatic acinar cells crucially rely on the PTF1 complex, and on additional transcription factors, to deploy their transcriptional program. Here, we identify NFIC as a novel regulator of acinar differentiation using a variety of methodological strategies. NFIC binding sites are found at very short distances from NR5A2-bound genomic regions and both proteins co-occur in the same complex. Nfic knockout mice show reduced expression of acinar genes and, in ChIP-seq experiments, NFIC binds the promoters of acinar genes. In addition, NFIC binds to the promoter of, and regulates, genes involved in RNA and protein metabolism; in Nfic knockout mice, p-RS6K1 and p-IEF4E are down-regulated indicating reduced activity of the mTOR pathway. In 266-6 acinar cells, NFIC dampens the ER stress program through its binding to ER stress gene promoters and is required for complete resolution of Tunicamycin-mediated ER stress. Normal human pancreata from subjects with low NFIC mRNA levels display reduced epxression of genes down-regulated in Nfic knockout mice. Consistently, NFIC displays reduced expression upon induced acute pancreatitis and is required for proper recovery after damage. Finally, expression of NFIC is lower in samples of mouse and human pancreatic ductal adenocarcinoma and Nfic knockout mice develop an increased number of mutant Kras-driven pre-neoplastic lesions.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献