Scale Invariance in fNIRS as a Measurement of Cognitive Load

Author:

Zhuang Chu,Meidenbauer Kimberly L.ORCID,Kardan OmidORCID,Stier Andrew J.ORCID,Choe Kyoung WhanORCID,Cardenas-Iniguez Carlos,Huppert Theodore J.ORCID,Berman Marc G.ORCID

Abstract

AbstractScale invariant neural dynamics are a relatively new but effective means of measuring changes in brain states as a result of varied cognitive load and task difficulty. This study is the first to test whether scale invariance (as measured by the Hurst exponent, H) can be used with functional near-infrared spectroscopy (fNIRS) to quantify cognitive load. We analyzed H extracted from the fNIRS time series while participants completed an N-back working memory task. Consistent with what has been demonstrated in fMRI, the current results showed that scale-invariance analysis significantly differentiated between task and rest periods as calculated from both oxy- (HbO) and deoxy-hemoglobin (HbR) concentration changes. Results from both channel-averaged H and a multivariate partial least squares approach (Task PLS) demonstrated higher H during the 1-back task than the 2-back task. These results were stronger for H derived from HbR than from HbO. As fNIRS is relatively portable and robust to motion-related artifacts, these preliminary results shed light on the promising future of measuring cognitive load in real life settings.Author SummaryScale invariance reflects a pattern of self-similarity (or fractalness) across a time series of brain data. In human neuroscience studies using EEG and fMRI, higher scale invariance has been associated with individuals being in a state of minimal cognitive effort or while performing a relatively easy task compared to doing something more challenging. Functional near-infrared spectroscopy (fNIRS) is a flexible neuroimaging technique that can be used in naturalistic settings and measures the same underlying biological signal as fMRI. We expected that, if scale invariant brain states are indeed robust indicators of cognitive load or task difficulty, we should be able to replicate previous findings in fNIRS. Consistent with this hypothesis, we find that more scale invariant brain states are indeed associated with less cognitively demanding and more restful brain states in fNIRS data. This finding opens up a wide array of potential applications for monitoring cognitive load and fatigue in real-life settings, such as during driving, learning in schools, or during interpersonal interactions.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans

2. Pinti P , Tachtsidis I , Hamilton A , Hirsch J , Aichelburg C , Gilbert S , et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Ann N Y Acad Sci. 2018. Available: https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.13948

3. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy

4. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application

5. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3