Author:
Wu Chengcang,Sun Shuku,Nimmakayala Padmavathi,Santos Felipe A.,Meksem Khalid,Springman Rachael,Ding Kejiao,Lightfoot David A.,Zhang Hong-Bin
Abstract
Genome-wide physical maps are crucial to many aspects of advanced genome research. We report a genome-wide, bacterial artificial chromosome (BAC) and plant-transformation-competent binary large-insert plasmid clone (hereafter BIBAC)-based physical map of the soybean genome. The map was constructed from 78,001 clones from five soybean BAC and BIBAC libraries representing 9.6 haploid genomes and three cultivars, and consisted of 2905 BAC/BIBAC contigs, estimated to span 1408 Mb in physical length. We evaluated the reliability of the map contigs using different contig assembly strategies, independent contig building methods, DNA marker hybridization, and different fingerprinting methods, and the results showed that the contigs were assembled properly. Furthermore, we tested the feasibility of integrating the physical map with the existing soybean composite genetic map using 388 DNA markers. The results further confirmed the nature of the ancient tetraploid origin of soybean and indicated that it is feasible to integrate the physical map with the linkage map even though greater efforts are needed. This map represents the first genome-wide, BAC/BIBAC-based physical map of the soybean genome and would provide a platform for advanced genome research of soybean and other legume species. The inclusion of BIBACs in the map would streamline the utility of the map for positional cloning of genes and QTLs, and functional analysis of soybean genomic sequences.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献