Detection and phasing of single base de novo mutations in biopsies from human in vitro fertilized embryos by advanced whole-genome sequencing

Author:

Peters Brock A.,Kermani Bahram G.,Alferov Oleg,Agarwal Misha R.,McElwain Mark A.,Gulbahce Natali,Hayden Daniel M.,Tang Y. Tom,Zhang Rebecca Yu,Tearle Rick,Crain Birgit,Prates Renata,Berkeley Alan,Munné Santiago,Drmanac Radoje

Abstract

Currently, the methods available for preimplantation genetic diagnosis (PGD) of in vitro fertilized (IVF) embryos do not detect de novo single-nucleotide and short indel mutations, which have been shown to cause a large fraction of genetic diseases. Detection of all these types of mutations requires whole-genome sequencing (WGS). In this study, advanced massively parallel WGS was performed on three 5- to 10-cell biopsies from two blastocyst-stage embryos. Both parents and paternal grandparents were also analyzed to allow for accurate measurements of false-positive and false-negative error rates. Overall, >95% of each genome was called. In the embryos, experimentally derived haplotypes and barcoded read data were used to detect and phase up to 82% of de novo single base mutations with a false-positive rate of about one error per Gb, resulting in fewer than 10 such errors per embryo. This represents a ∼100-fold lower error rate than previously published from 10 cells, and it is the first demonstration that advanced WGS can be used to accurately identify these de novo mutations in spite of the thousands of false-positive errors introduced by the extensive DNA amplification required for deep sequencing. Using haplotype information, we also demonstrate how small de novo deletions could be detected. These results suggest that phased WGS using barcoded DNA could be used in the future as part of the PGD process to maximize comprehensiveness in detecting disease-causing mutations and to reduce the incidence of genetic diseases.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Reference51 articles.

1. Rare Variants in NR2F2 Cause Congenital Heart Defects in Humans

2. Array CGH analysis shows that aneuploidy is not related to the number of embryos generated

3. Estimating the human mutation rate using autozygosity in a founder population

4. Computational Techniques for Human Genome Resequencing Using Mated Gapped Reads

5. Centers for Disease Control and Prevention ASfRM, Society for Assisted Reproductive Technology . 2011. 2009 Assisted Reproductive Technology Success Rates: National Summary and Fertility Clinic Reports. US Department of Health and Human Services, Washington, DC.

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3