Coelomata and Not Ecdysozoa: Evidence From Genome-Wide Phylogenetic Analysis

Author:

Wolf Yuri I.,Rogozin Igor B.,Koonin Eugene V.

Abstract

Relative positions of nematodes, arthropods, and chordates in animal phylogeny remain uncertain. The traditional tree topology joins arthropods with chordates in a coelomate clade, whereas nematodes, which lack a coelome, occupy a basal position. However, the current leading hypothesis, based on phylogenetic trees for 18S ribosomal RNA and several proteins, joins nematodes with arthropods in a clade of molting animals, Ecdysozoa. We performed a phylogenetic analysis of over 500 sets of orthologous proteins, which are represented in plants, animals, and fungi, using maximum likelihood, maximum parsimony, and distance methods. Additionally, to increase the statistical power of topology tests, the same methods were applied to concatenated alignments of subunits of eight conserved macromolecular complexes. The majority of the methods, when applied to most of the orthologous clusters, both concatenated and individual, grouped the fly with humans to the exclusion of the nematode, in support of the coelomate phylogeny. Trees were also constructed using information on insertions and deletions in orthologous proteins, combinations of domains in multidomain proteins, and presence-absence of species in clusters of orthologs. All of these approaches supported the coelomate clade and showed concordance between evolution of protein sequences and higher-level evolutionary events, such as domain fusion or gene loss.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Mining with Three Genome-Scale Approaches Supports that Lungfish is the Closest Living Relative of Land Vertebrate, but not Coelacanth;2022 International Conference on Computational Science and Computational Intelligence (CSCI);2022-12

2. History and Diversity: Establishing a Context for Helminth Biology;Helminth Infections and their Impact on Global Public Health;2022

3. INTRODUCTION;Invertebrate Medicine;2021-12-31

4. Molecular Phylogeny Reconstruction;eLS;2020-10-29

5. An evolutionary model motivated by physicochemical properties of amino acids reveals variation among proteins;Bioinformatics;2018-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3