Altered motoneuron properties contribute to motor deficits in a rabbit hypoxia ischemia model of cerebral palsy

Author:

Steele P.,Cavarsan C. F.,Dowaliby L.,Westefeld M.,Drobyshevsky A.,Gorassini M. A.,Quinlan K. A.

Abstract

AbstractCerebral palsy (CP) is caused by a variety of factors attributed to early brain damage, resulting in permanently impaired motor control, marked by weakness and muscle stiffness. To find out if altered physiology of spinal motoneurons (MNs) could contribute to movement deficits, we performed whole cell patch clamp in neonatal rabbit spinal cord slices after developmental injury at 79% gestation. After preterm hypoxia-ischemia (HI), rabbits are born with motor deficits consistent with a spastic phenotype including hypertonia and hyperreflexia. There is a range in severity, thus kits are classified as severely affected, mildly affected, or unaffected based on modified Ashworth scores and other behavioral tests. At postnatal day (P)0-5, we recorded electrophysiological parameters of 40 MNs in transverse spinal cord slices using whole cell patch clamp. Using a multivariate analysis of neuronal parameters, we found significant differences between groups (severe, mild, unaffected and sham control MNs), age (P0 to P5) and spinal cord region (cervical to sacral). Severe HI MNs showed more sustained firing patterns, depolarized resting membrane potential, and a higher threshold for action potentials. These properties could contribute to both muscle stiffness and weakness, respectively, hallmarks of spastic CP. Interestingly altered persistent inward currents (PICs) and morphology in severe HI MNs would dampen excitability (reduced normalized PIC amplitude and increased dendritic length). In summary, changes we observed in spinal MN physiology likely contribute to severity of the phenotype including weakness and hypertonia, and therapeutic strategies for CP could target excitability of spinal MNs.Key PointsPhysiology of neonatal spinal motoneurons is altered after in utero hypoxia-ischemic injuryIn motoneurons from severely affected animals there is more sustained firing (lower ΔI values), a depolarized resting potential, but a higher voltage threshold for action potential firing.Altered motoneuron excitability could contribute directly to muscle stiffness and spasticity in cerebral palsy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3