Sick plants in grassland communities: a growth-defense trade-off is the main driver of fungal pathogen abundance and impact

Author:

Cappelli Seraina L.,Pichon Noémie A.ORCID,Kempel AnneORCID,Allan EricORCID

Abstract

ABSTRACTAboveground fungal pathogens can substantially reduce biomass production in grasslands. However, we lack a mechanistic understanding of the drivers of fungal infection and impact. Using a global change biodiversity experiment we show that the trade-off between plant growth and defense is the main determinant of fungal infection in grasslands. Nitrogen addition only indirectly increased infection via shifting plant communities towards more fast growing species. Plant diversity did not decrease infection, likely because the spillover of generalist pathogens or dominance of susceptible species counteracted dilution effects. There was also evidence that fungal pathogens reduced biomass more strongly in diverse communities. Further, fungicide altered plant-pathogen interactions beyond just removing pathogens, probably by removing certain fungi more efficiently than others. Our results show that fungal pathogens have large effects on plant functional composition and biomass production and highlight the importance of considering changes in pathogen community composition to understand their effects.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3