Loss-of-function in IRF2BPL is associated with neurological phenotypes

Author:

Marcogliese Paul C.,Shashi Vandana,Spillmann Rebecca C.,Stong Nicholas,Rosenfeld Jill A.,Koenig Mary Kay,Martínez-Agosto Julián A.,Herzog Matthew,Chen Agnes H.,Dickson Patricia I.,Lin Henry J.,Vera Moin U.,Salamon Noriko,Ortiz Damara,Infante Elena,Steyaert Wouter,Dermaut Bart,Poppe Bruce,Chung Hyung-Lok,Zuo Zhongyuan,Lee Pei-Tseng,Kanca Oguz,Xia Fan,Yang Yaping,Smith Edward C.,Jasien Joan,Kansagra Sujay,Spiridigliozzi Gail,El-Dairi Mays,Lark Robert,Riley Kacie,Koeberl Dwight D.,Golden-Grant Katie,Yamamoto Shinya,Wangler Michael F.,Mirzaa Ghayda,Hemelsoet Dimitri,Lee Brendan,Nelson Stanley F.,Goldstein David B.,Bellen Hugo J.,Pena Loren D.M.,

Abstract

AbstractThe Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) gene encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals affected with neurological symptoms who carry damaging heterozygous variants in IRF2BPL. Five cases carrying nonsense variants in IRF2BPL resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The bioinformatics signature for IRF2BPL based on population genomics is consistent with a gene that is intolerant to variation. We show that the IRF2BPL ortholog in the fruit fly, called pits (protein interacting with Ttk69 and Sin3A), is broadly expressed including the nervous system. Complete loss of pits is lethal early in development, whereas partial knock-down with RNA interference in neurons leads to neurodegeneration, revealing requirement for this gene in proper neuronal function and maintenance. The nonsense variants in IRF2BPL identified in patients behave as severe loss-of-function alleles in this model organism, while ectopic expression of the missense variants leads to a range of phenotypes. Taken together, IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3