Abstract
AbstractDispersal evolution impacts the fluxes of individuals and hence, connectivity in metapopulations. Connectivity is therefore decoupled from the structural connectedness of the patches within the spatial network. Because of demographic feedbacks, local selection can additionally steer the evolution of other life history traits. We investigated how different levels of connectedness affect dispersal and life history evolution by varying the interpatch distance in replicated experimental metapopulations of the two-spotted spider. We implemented a shuffling treatment to separate local- and metapopulation-level selection.With lower metapopulation connectedness, an increased starvation resistance and delayed dispersal evolved. Intrinsic growth rates evolved at the local level by transgenerational plasticity or epigenetic processes. Changes in patch connectedness thus induce the genetic and non-genetic evolution of dispersal costs and demographic traits at both the local and metapopulation level. These trait changes are anticipated to impact metapopulations eco-evolutionary dynamics, and hence, the persistence and performance of spatially structured populations.
Publisher
Cold Spring Harbor Laboratory