Author:
Woloszynek Stephen,Zhao Zhengqiao,Chen Jian,Rosen Gail L.
Abstract
AbstractAdvances in high-throughput sequencing have increased the availability of microbiome sequencing data that can be exploited to characterize microbiome community structure in situ. We explore using word and sentence embedding approaches for nucleotide sequences since they may be a suitable numerical representation for downstream machine learning applications (especially deep learning). This work involves first encoding (“embedding”) each sequence into a dense, low-dimensional, numeric vector space. Here, we use Skip-Gram word2vec to embed k-mers, obtained from 16S rRNA amplicon surveys, and then leverage an existing sentence embedding technique to embed all sequences belonging to specific body sites or samples. We demonstrate that these representations are biologically meaningful, and hence the embedding space can be exploited as a form of feature extraction for exploratory analysis. We show that sequence embeddings preserve relevant information about the sequencing data such as k-mer context, sequence taxonomy, and sample class. Specifically, the sequence embedding space resolved differences among phyla, as well as differences among genera within the same family. Distances between sequence embeddings had similar qualities to distances between alignment identities, and embedding multiple sequences can be thought of as generating a consensus sequence. Using sample embeddings for body site classification resulted in negligible performance loss compared to using OTU abundance data. Lastly, the k-mer embedding space captured distinct k-mer profiles that mapped to specific regions of the 16S rRNA gene and corresponded with particular body sites. Together, our results show that embedding sequences results in meaningful representations that can be used for exploratory analyses or for downstream machine learning applications that require numeric data. Moreover, because the embeddings are trained in an unsupervised manner, unlabeled data can be embedded and used to bolster supervised machine learning tasks.Author summaryImprovements in the way genomes are sequenced have led to an abundance of microbiome data. With the right approaches, researchers use this data to thoroughly characterize how microbes interact with each other and their host, but sequencing data is of a form (sequences of letters) not ideal for many data analysis approaches. We therefore present an approach to transform sequencing data into arrays of numbers that can capture interesting qualities of the data at the sub-sequence, full-sequence, and sample levels. This allows us to measure the importance of certain microbial sequences with respect to the type of microbe and the condition of the host. Also, representing sequences in this way improves our ability to use other complicated modeling approaches. Using microbiome data from human samples, we show that our numeric representations captured differences between different types of microbes, as well as differences in the body site location from which the samples were collected.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献