Identifying functional targets from transcription factor binding data using SNP perturbation

Author:

Xiang Jing,Kim Seyoung

Abstract

AbstractTranscription factors (TFs) play a key role in transcriptional regulation by binding to DNA to initiate the transcription of target genes. Techniques such as ChIP-seq and DNase-seq provide a genome-wide map of TF binding sites but do not offer direct evidence that those bindings affect gene expression. Thus, these assays are often followed by TF perturbation experiments to determine functional binding that leads to changes in target gene expression. However, such perturbation experiments are costly and time-consuming, and have a well-known limitation that they cannot distinguish between direct and indirect targets. In this study, we propose to use the naturally occurring perturbation of gene expression by genetic variation captured in population SNP and expression data to determine functional targets from TF binding data. We introduce a computational methodology based on probabilistic graphical models for isolating the perturbation effect of each individual SNP, given a large number of SNPs across genomes perturbing the expression of all genes simultaneously. Our computational approach constructs a gene regulatory network over TFs, their functional targets, and further downstream genes, while at the same time identifying the SNPs perturbing this network. Compared to experimental perturbation, our approach has advantages of identifying direct and indirect targets, and leveraging existing data collected for expression quantitative trait locus mapping, a popular approach for studying the genetic architecture of expression. We apply our approach to determine functional targets from the TF binding data for a lymphoblastoid cell line from the ENCODE Project, using SNP and expression data from the HapMap 3 and 1000 Genomes Project samples. Our results show that from TF binding data, functional target genes can be determined by SNP perturbation of various aspects that impact transcriptional regulation, such as TF concentration and TF-DNA binding affinity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3