Physical interactions between Gsx2 and Ascl1 regulate the balance between progenitor expansion and neurogenesis in the mouse lateral ganglionic eminence

Author:

Roychoudhury Kaushik,Salomone Joseph,Qin Shenyue,Nakafuku Masato,Gebelein Brian,Campbell KennethORCID

Abstract

AbstractThe Gsx2 homeodomain transcription factor is required to maintain neural progenitor identity in the lateral ganglionic eminence (LGE) within the developing ventral telencephalon, despite its role in upregulating the neurogenic factor Ascl1. How Gsx2 maintains cells as progenitors in the presence of a pro-differentiation factor is unclear. Here, we show that Gsx2 and Ascl1 are co-expressed in dividing subapical progenitors within the LGE ventricular zone (VZ). Moreover, we show that while Ascl1 misexpression promotes neurogenesis in dorsal telencephalic progenitors that do not express Gsx2, co-expression of Gsx2 with Ascl1 inhibits neurogenesis in these cells. To investigate the mechanisms underlying this inhibition, we used a cell-based luciferase assay to show that Gsx2 reduced the ability of Ascl1 to activate target gene expression in a dose-dependent and DNA binding-independent manner. Yeast 2-hybrid and co-immunoprecipitation assays revealed that Gsx2 physically interacts with the basic-Helix-Loop-Helix (bHLH) domain of Ascl1, and DNA binding assays demonstrated that this interaction interferes with the ability of Ascl1 to form homo- or heterodimers with E-proteins such as Tcf3 on DNA. To further assess for in vivo molecular interactions between these transcription factors within the telencephalon, we modified a proximity ligation assay for embryonic tissue sections and found that Ascl1:Gsx2 interactions are enriched within VZ progenitors, whereas Ascl1:Tcf3 interactions predominate in basal progenitors. Altogether, these findings suggest that physical interactions between Gsx2 and Ascl1 limit Ascl1:Ascl1 and Ascl1:Tcf3 interactions, and thereby inhibit Ascl1-dependennt neurogenesis and allow for progenitor expansion within the LGE.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3