The positive role of noise for information acquisition in biological signaling pathways

Author:

Azpeitia Eugenio,Wagner Andreas

Abstract

AbstractAll living systems acquire information about their environment. At the cellular level, they do so through signaling pathways, which rely on interactions between molecules that detect and transmit the presence of an extracellular cue or signal to the cell’s interior. Such interactions are inherently stochastic and thus noisy. In classical information theory, a noisy communication channel degrades the amount of transmissible information relative to a noise-free channel. For this reason, one would expect that the kinetic parameters that determine a pathway’s operation minimize noise. We show that this is not the case under a wide range of biologically sensible parameter values. Specifically, we perform computational simulations of simple signaling systems, which show that a noisy molecular interaction dynamics is a necessary condition for information acquisition. Moreover, we show that optimal information acquisition, where a system reacts most sensitively to changes in the environment, can be obtained close to the maximal attainable level of noise in the system. Our work highlights the positive role that noise can have in biological information processing.Author summaryThe acquisition of information is fundamental for living systems, because the decisions they take based on such information directly affect survival and reproduction. The molecular mechanisms used by cells to acquire information are signaling pathways. The molecular interactions of signaling pathways, such as the binding of a signal to a receptor, are by nature noisy. This is important, because noise disrupts information. Hence, to maximize the acquisition of information, signaling pathways should minimize the noise of their molecular interactions. Here we show that a noisy dynamic of the molecular interactions can improve the acquisition of information, and that the maximal capacity to acquire information can be obtained with a close-to-maximal level of noise in a signaling pathway. Thus, contrary to expectations, noise can improve the acquisition of information in living systems.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Environmental sensing, information transfer, and cellular decision-making

2. Animal signals

3. Boyer PD , Krebs EG , Tamanoi F , editors. The Enzymes. 3d ed. New York: Academic Press; 1970. 1 p.

4. Cantley LC. Signal transduction: principles, pathways, and processes. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory; 2014.

5. Noise in biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3