Par3/Baz levels control epithelial folding at actomyosin-enriched compartmental boundaries

Author:

Urbano Jose M.ORCID,Naylor Huw W.,Scarpa ElenaORCID,Muresan LeilaORCID,Sanson BénédicteORCID

Abstract

AbstractEpithelial folding is crucial to shape embryos and tissues during development. Here we investigate the coupling between epithelial folding and actomyosin-rich boundaries. The mechanistic relationship between the two is unclear, since actomyosin-rich boundaries can be either associated with folds or not, while epithelial folding has been found to be either dependent or independent of actomyosin contractility. Here we investigate the shallow folds that form at compartmental parasegment boundaries (PSBs) in the early Drosophila embryo. First, we demonstrate that formation of these folds is dependent on the contractility of supracellular actomyosin cables. When the Myosin II phosphatase Flawing is depleted at the PSBs, actomyosin contractility increases, resulting in deeper folds. Conversely, in wingless mutants, actomyosin enrichment and increased contractility at PSBs are lost and this correlates with an absence of folding. Furthermore, when we make ectopic PSBs by expressing Wingless ubiquitously, the ectopic boundaries become enriched in actomyosin and epithelial folds form. Ectopic PSB folds, however, are much deeper than endogenous ones, indicating that epithelial folding is normally under inhibitory control. We present evidence that depletion of Bazooka/Par-3 levels at PSB cell-cell contacts, which is under Wingless signaling control, is responsible for this inhibition. Bazooka is found depleted at endogenous but not ectopic PSBs. In embryos overexpressing Bazooka, endogenous PSB folds form earlier and are much deeper. To ask how local signaling at the boundaries control Bazooka levels at cell-cell contacts, we examined embryos that ectopically expressed Wingless in an hedgehog mutant background. In these embryos, inhibition of folding is rescued, with ectopic PSBs now forming shallow folds as endogenous PSBs. Bazooka is depleted at these ectopic PSBs in absence of Hedgehog, suggesting an opposite effect of Wingless and Hedgehog signaling on Bazooka levels at PSB cell-cell contacts. This uncovers a new role of Bazooka in controlling fold formation at actomyosin-rich compartmental boundaries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3