A lipocalin mediates unidirectional haem biomineralization in malaria parasites

Author:

Matz Joachim M.ORCID,Drepper Benjamin,Blum Thorsten B.,van Genderen Eric,Burrell Alana,Martin Peer,Stach Thomas,Collinson Lucy,Abrahams Jan Pieter,Matuschewski Kai,Blackman Michael J.

Abstract

ABSTRACTDuring blood stage development, malaria parasites are challenged with the detoxification of enormous amounts of haem released during the proteolytic catabolism of erythrocytic haemoglobin. They tackle this problem by sequestering haem into bioinert crystals known as haemozoin. The mechanisms underlying this biomineralization process remain enigmatic. Here, we demonstrate that both rodent and human malaria parasite species secrete and internalize a lipocalin-like protein, PV5, to control haem crystallization. Transcriptional deregulation of PV5 in the rodent parasite Plasmodium berghei results in inordinate elongation of haemozoin crystals, while conditional PV5 inactivation in the human malaria agent Plasmodium falciparum causes excessive multi-directional crystal branching. Although haemoglobin processing remains unaffected, PV5-deficient parasites generate less haemozoin. Electron diffraction analysis indicates that despite the distinct changes in crystal morphology neither the crystalline order nor unit cell of haemozoin are affected by impaired PV5 function. Deregulation of PV5 expression renders P. berghei hypersensitive to the antimalarial drugs artesunate, chloroquine, and atovaquone, resulting in accelerated parasite clearance following drug treatment in vivo. Together, our findings demonstrate the Plasmodium-tailored role of a lipocalin family member in haemozoin formation and underscore the haem biomineralization pathway as an attractive target for therapeutic exploitation.SIGNIFICANCEDuring blood stage development, the malaria parasite replicates inside erythrocytes of the vertebrate host, where it engulfs and digests most of the available haemoglobin. This results in release of the oxygen-binding prosthetic group haem, which is highly toxic in its unbound form. The parasite crystallizes the haem into an insoluble pigment called haemozoin, a process that is vital for parasite survival and which is exploited in antimalarial therapy. We demonstrate that the parasite uses a protein called PV5 in haemozoin formation and that interfering with PV5 expression can increase the parasite’s sensitivity to antimalarial drugs during blood infection. An improved understanding of the mechanisms underlying haem sequestration will provide valuable insights for future drug development efforts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3