Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools

Author:

Sabariegos Rosario,Ortega-Prieto Ana M.,Díaz-Martínez Luis,Grande-Pérez Ana,Gallego Isabel,de Ávila Ana I.,Soria María Eugenia,Gastaminza Pablo,Domingo Esteban,Perales Celia,Mas AntonioORCID

Abstract

AbstractIn the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the nucleoside guanosine (Gua). Here, we report that Gua and not the other standard nucleosides inhibits HCV replication in human hepatoma cells. Gua did not directly inhibit the in vitro polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-phosphate (NDPs and NTPs), leading to deficient HCV RNA replication and reduction of infectious progeny virus production. Changes in the concentrations of NTP or NDP modified NS5B RNA polymerase activity in vitro, in particular de novo RNA synthesis and template switching. Furthermore, the Gua-mediated changes were associated with a significant increase in the number of indels in viral RNA, which may account for the reduction of the specific infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper NTP:NDP balance appears to be critical to ensure HCV polymerase fidelity and minimal production of defective genomes.Author summaryRibonucleoside metabolism is essential for replication of RNA viruses. In this article we describe the antiviral activity of the natural ribonucleoside guanosine (Gua). We demonstrate that hepatitis C virus (HCV) replication is inhibited in the presence of increasing concentrations of this ribonucleoside and that this inhibition does not occur as a consequence of a direct inhibition of HCV polymerase. Cells exposed to increasing concentrations of Gua show imbalances in the intracellular concentrations of nucleoside-diphosphates and triphosphates and as the virus is passaged in these cells, it accumulates mutations that reduce its infectivity and decimate its normal spreading capacity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3