A Pumpless Microfluidic Neonatal Lung Assist Device for Support of Preterm Neonates in Respiratory Distress

Author:

Dabaghi MohammadhosseinORCID,Rochow Niels,Saraei Neda,Fusch Gerhard,Monkman Shelley,Da Kevin,Shahin-Shamsabadi Alireza,Brash John L.,Predescu Dragos,Delaney Kathleen,Fusch Christoph,Selvaganapathy P. Ravi

Abstract

AbstractPremature neonates suffer from respiratory morbidity as their lungs are immature and current supportive treatment such as mechanical ventilation or extracorporeal membrane oxygenation (ECMO) cause iatrogenic injuries. A non-invasive and biomimetic concept known as the “artificial placenta” would be beneficial to overcome complications associated with the current respiratory support of preterm infants. Here, a pumpless oxygenator connected to the systemic circulation supports the lung function to relieve respiratory distress. In this paper, we demonstrate the first successful operation of a microfluidic, artificial placenta type neonatal lung assist device (LAD) on a newborn piglet model which is the closest representation of preterm human infants. This LAD has high oxygenation capability in both pure oxygen and room air as the sweep gas. It was able to relieve the respiratory distress that the newborn piglet was put under during experimentation, repeatedly and over significant duration of time. These findings indicate that this LAD has potential application as a biomimetic artificial placenta to support respiratory needs of preterm neonates.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3