Evaluation of high-resolution atmospheric and oceanic simulations of the California Current System

Author:

Renault LionelORCID,McWilliams James C.ORCID,Kessouri FaycalORCID,Jousse Alexandre,Frenzel HartmutORCID,Chen Ru,Deutsch CurtisORCID

Abstract

AbstractThis paper is the first of two that present a 16-year hindcast solution from a coupled physical and biogeochemical model of the California Current System (CCS) along the U. S. West Coast and validate the physical solution with respect to mean, seasonal, interannual, and sub-seasonal fields and, to a lesser degree, eddy variability. Its companion paper is Deutsch et al. (2021a). The intent is to construct and demonstrate a modeling tool that will be used for mechanistic explanations, attributive causal assessments, and forecasts of future evolution for circulation and biogeochemistry, with particular attention to the increasing oceanic stratification, deoxygenation, and acidification. A well-resolved mesoscale (dx = 4 km) simulation of the CCS circulation is made with the Regional Oceanic Modeling System over a hindcast period of 16 years from 1995 to 2010. The oceanic solution is forced by a high-resolution (dx = 6 km) regional configuration of the Weather and Research Forecast (WRF) atmospheric model. Both of these high-resolution regional oceanic and atmospheric simulations are forced by lateral open boundary conditions taken from larger-domain, coarser-resolution parent simulations that themselves have boundary conditions from the Mercator and Climate Forecast System reanalyses, respectively. We show good agreement between the simulated atmospheric forcing of the oceanic and satellite measurements for the spatial patterns and temporal variability for the surface fluxes of momentum, heat, and freshwater. The simulated oceanic physical fields are then evaluated with satellite and in situ measurements. The simulation reproduces the main structure of the climatological upwelling front and cross-shore isopycnal slopes, the mean current patterns (including the California Undercurrent), and the seasonal, interannual, and subseasonal variability. It also shows agreement between the mesoscale eddy activity and the windwork energy exchange between the ocean and atmosphere modulated by influences of surface current on surface stress. Finally, the impact of using a high frequency wind forcing is assessed for the importance of synoptic wind variability to realistically represent oceanic mesoscale activity and ageostrophic inertial currents.

Publisher

Cold Spring Harbor Laboratory

Reference122 articles.

1. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present)

2. Up to what extent can we characterize ocean eddies using present-day gridded altimetric products?;Journal of Geophysical Research: Oceans,2018

3. Changes in pteropod distributions and shell dissolution across a frontal system in the California Current System;Mar. Ecol. Progr. Ser,2015

4. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast;Coauthors;Sci. Rpts,2017

5. Gridded surface wind fields from Metop/ASCAT measurements;Int. J. Remote Sensing,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3