Nicotine exposure and neuronal activity regulate Golgi membrane dispersal and distribution

Author:

Govind Anitha P.ORCID,Jeyifous Okunola,Russell Theron A.ORCID,Vaasjo Lee O.,Yi Zola,Weigel Aubrey V.ORCID,Newell Luke,Koranda Jessica L.,Singh Karanveer,Valbuena FernandoORCID,Glick Benjamin S.,Mukherjee Jogeshwar,Lippincott-Schwartz Jennifer,Zhuang Xiaoxi,Green William N.

Abstract

AbstractHow nicotine exposure produces long-lasting changes that remodel neural circuits with addiction is unknown. Here, we report that long-term nicotine exposure alters the trafficking of α4β2-type nicotinic acetylcholine receptors (α4β2Rs) by dispersing and redistributing the Golgi apparatus. In cultured neurons, dispersed Golgi membranes were distributed throughout somata, dendrites and axons. Small, mobile vesicles in dendrites and axons lacked standard Golgi markers and were identified by other Golgi enzymes that modify glycans. Nicotine exposure increased levels of dispersed Golgi membranes, which required α4β2R expression. Similar nicotine-induced changes occurred in vivo at dopaminergic neurons at mouse nucleus accumbens terminals, consistent with these events contributing to nicotine’s addictive effects. Characterization in vitro demonstrated that dispersal was reversible, that dispersed Golgi membranes were functional, and that membranes were heterogenous in size, with smaller vesicles emerging from larger “ministacks”, similar to Golgi dispersal induced by nocadazole. Protocols that increased cultured neuronal synaptic excitability also increased Golgi dispersal, without the requirement of α4β2R expression. Our findings reveal novel activity- and nicotine-dependent changes in neuronal intracellular morphology. These changes regulate levels and location of dispersed Golgi membranes at dendrites and axons, which function in local trafficking at subdomains.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3