Nanoscale Molecular Characterisation of Hair Cuticles using Integrated AFM-IR

Author:

Fellows A. P.ORCID,Casford M. T. L.,Davies P. B.

Abstract

AbstractThe nanometre-scale topography and chemical structure of hair cuticles has been investigated by vibrational spectroscopy and imaging in two spectral regions. The combination of Atomic Force Microscopy with a tuneable infrared laser (AFM-IR) circumvents the diffraction limit that has impaired traditional infrared spectroscopy, facilitating surface spectroscopy at ultra-spatial resolution. The variation in protein and lipid content of the cuticle cell surface approaching its edge, as well as the exposed layered structure of the cell at the edge itself, was investigated. Furthermore, the contribution of cystine-related products to the cuticle layers was determined. The variation of protein, lipid and cystine composition in the observed layers, as well as the measured dimensions of each, correspond closely to that of the epicuticle, A-layer, exocuticle and endocuticle layers of the cuticle cell sub-structure.Statement of SignificanceUsing AFM-IR to analyse the nanoscale cuticle features is both significant and novel in the field. Thus far, the great majority of work on the chemical investigation of the structure of hair has been limited to bulk measurements, or subject to the diffraction limit associated with traditional IR spectroscopies and microscopies. AFM-IR circumvents this diffraction limit and allows nanometre-scale, localised chemical investigation with high surface selectivity. While non-chemical investigations, e.g. those using Transmission Election Microscopy, have previously shown cuticles to have a layered substructure, AFM-IR sheds light on significant chemical variations of protein and lipid compositions within such layers, enabling their quantification.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3