Author:
Riching Andrew S.,Danis Etienne,Zhao Yuanbiao,Cao Yingqiong,Chi Congwu,Bagchi Rushita A.,Klein Brianna J.,Xu Hongyan,Kutateladze Tatiana G.,McKinsey Timothy A.,Buttrick Peter M.,Song Kunhua
Abstract
SummaryDirect reprogramming of fibroblasts into cardiomyocytes (CMs) represents a promising strategy to regenerate CMs lost after ischemic heart injury. Overexpression of GATA4, HAND2, MEF2C, TBX5, miR-1, and miR-133 (GHMT2m) along with transforming growth factor beta (TGF-β) inhibition efficiently promotes reprogramming. However, the mechanisms by which TGF-β blockade promotes cardiac reprogramming remain unknown. Here, we identify interactions between the histone H3 lysine 27 trimethylation (H3K27me3) – demethylase JMJD3, the SWI/SNF remodeling complex subunit BRG1, and cardiac transcription factors. Furthermore, canonical TGF-β signaling regulates the interaction between GATA4 and JMJD3. TGF-β activation impairs the ability of GATA4 to bind target genes and prevents demethylation of H3K27 at cardiac gene promoters during cardiac reprogramming. Finally, a mutation in GATA4 (V267M) exhibits reduced binding to JMJD3 and impaired cardiomyogenesis. Thus, we have identified an epigenetic mechanism wherein canonical TGF-β pathway activation impairs cardiac gene programming by interfering with GATA4-JMJD3 interactions.
Publisher
Cold Spring Harbor Laboratory