Metagenomic insights into the metabolism and ecologic functions of the widespread DPANN archaea from deep-sea hydrothermal vents

Author:

Cai Ruining,Zhang Jing,Liu Rui,Sun Chaomin

Abstract

ABSTRACTDue to the particularity of metabolism and the importance of ecological roles, the archaea living in deep-sea hydrothermal system always attract great attention. Included, the DPANN superphylum archaea, which are massive radiation of organisms, distribute widely in hydrothermal environment, but their metabolism and ecology remain largely unknown. In this study, we assembled 20 DPANN genomes comprised in 43 reconstructed genomes from deep-sea hydrothermal sediments, presenting high abundance in the archaea kingdom. Phylogenetic analysis shows 6 phyla comprising Aenigmarchaeota, Diapherotrites, Nanoarchaeota, Pacearchaeota, Woesearchaeota and a new candidate phylum designated DPANN-HV-2 are included in the 20 DPANN archaeal members, indicating their wide diversity in this extreme environment. Metabolic analysis presents their metabolic deficiencies because of their reduced genome size, such as gluconeogenesis, de novo nucleotide and amino acid synthesis. However, they possess alternative and economical strategies to fill this gap. Furthermore, they were detected to have multiple capacities of assimilating carbon dioxide, nitrogen and sulfur compounds, suggesting their potentially important ecologic roles in the hydrothermal system.IMPORTANCEDPANN archaea show high distribution in the hydrothermal system. However, they possess small genome size and some incomplete biological process. Exploring their metabolism is helpful to know how such small lives adapt to this special environment and what ecological roles they play. It was ever rarely noticed and reported. Therefore, in this study, we provide some genomic information about that and find their various abilities and potential ecological roles. Understanding their lifestyles is helpful for further cultivating, exploring deep-sea dark matters and revealing microbial biogeochemical cycles in this extreme environment.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3