Achieving symptom relief in patients with Myalgic encephalomyelitis by targeting the neuro-immune interface and inducing disease tolerance

Author:

Rodriguez Lucie S.T.,Pou Christian,Lakshmikanth Tadepally,Zhang Jingdian,Mugabo Constantin Habimana,Wang Jun,Mikes Jaromir,Olin Axel,Chen Yang,Rorbach Joanna,Juto Jan-Erik,Li Tie Qiang,Julin Per,Brodin PetterORCID

Abstract

AbstractMyalgic encephalomyelitis, ME, previously also known as chronic fatigue syndrome (CFS) is a heterogeneous, debilitating syndrome of unknown etiology responsible for long-lasting disability in millions of patients worldwide. The most well-known symptom of ME is post-exertional malaise, but many patients also experience autonomic dysregulation, cranial nerve dysfunction and signs of immune system activation. Many patients also report a sudden onset of disease following an infection. The brainstem is a suspected focal point in ME pathogenesis and patients with structural impairment to the brainstem often show ME-like symptoms. The brainstem is also where the vagus nerve originates, a critical neuro-immune interface and mediator of the inflammatory reflex which regulate systemic inflammation. Here we report the results of a randomized, placebo-controlled trial using intranasal mechanical stimulation (INMEST) targeting the vagus nuclei, and higher centers in the brain of ME-patients and induce a sustainable, ∼30% reduction in overall symptom scores after eight weeks of treatment. By performing longitudinal, systems-level monitoring of the blood immune system in these patients, we uncover chronic immune activation in ME, as well as immunological correlates of improvement that center around the IL-17 axis, gut-homing immune cells and reduced inflammation. The mechanisms of symptom relief remains to be determined, but transcriptional analyses suggest an upregulation of disease tolerance mechanisms. We wish for these results to bring some hope to patients suffering from ME and inspire researchers to help test our new hypothesis that ME is a condition caused by a failure of inducing disease tolerance upon infection and persistent immune activation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3