Selective Germline Genome Edited Pig Meninges Grafts for the Abdominal Wall Closure in Damage Control Surgery

Author:

Zou Lijin,Zhang Youlai,He Ying,Yu Hui,Chen Jun,Liu Delong,Lin Sixiong,Gao Manman,Zhong Gang,Lei Weicheng,Zhou Guangqian,Zou Xuenong,Li Kai,Yu Yin,Zha Gaofeng,Li Linxian,Zeng Yuanlin,Wang Jianfei,Wang Gang

Abstract

AbstractReconstruction of abdominal wall defects is still a big challenge in surgery, especially where there is insufficient fascia muscular or excessive tension of the defects in emergency and life-threatening scenarios. Indeed, the concept of damage control surgery has been advanced in the management of both traumatic and nontraumatic surgical settings. The strategy requires abridged surgery and quick back to intensive care units (ICU) for aggressive resuscitation. In the damage control laparotomy, patients are left with open abdomen or provisional closure of the abdomen with a planned return to the operating room for definitive surgery. So far, various techniques have been utilized to achieve early temporary abdominal closure, but there is no clear consensus on the ideal method or material for abdominal wall reconstruction. We recently successfully created the selective germline genome-edited pig (SGGEP) and here we aimed to explore the feasibility of in vivo reconstruction of the abdominal wall in a rabbit model with SGGEP meninges grafts (SGGEP-MGs). Our result showed that the SGGEP-MGs could restore the integrity of the defect very well. After 7 weeks of engraftment, there was no sign of herniation observed, the grafts were re-vascularized, and the defects were well repaired. Histologically, the boundary between the graft and the host was very well integrated and there was no strong inflammatory response. Therefore, this kind of closure could help restore the fluid and electrolyte balance and to dampen systemic inflammatory response in damge control surgery while ADM graft failed to establish re-vascularization as the same as the SGGEP-MG. It is concluded that the meninges of SGGEP could serve as a high-quality alternative for restoring the integrity of the abdominal wall, especially for damage control surgery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3