Intra-articular AAV-PHP.S mediated chemogenetic targeting of knee-innervating dorsal root ganglion neurons alleviates inflammatory pain in mice

Author:

Chakrabarti SampurnaORCID,Pattison Luke A.,Doleschall Balint,Rickman Rebecca H.,Blake Helen,Callejo Gerard,Heppenstall Paul A.,Smith Ewan St. JohnORCID

Abstract

AbstractObjectiveJoint pain is the major clinical symptom of arthritis that affects millions of people. Controlling the excitability of knee-innervating dorsal root ganglion (DRG) neurons (knee neurons) could potentially provide pain relief. Therefore, our objective was to evaluate whether the newly engineered adeno-associated virus (AAV) serotype, AAV-PHP.S, can deliver functional artificial receptors to control knee neuron excitability following intra-articular knee injection.MethodsAAV-PHP.S virus packaged with dTomato fluorescent protein and either excitatory (Gq) or inhibitory (Gi) designer receptors activated by designer drugs (DREADDs) was injected into the knee joint of adult mice. Labelling of DRG neurons by AAV-PHP.S from the knee was evaluated using immunohistochemistry. Functionality of Gq- and Gi-DREADDs was evaluated using whole-cell patch clamp electrophysiology on acutely cultured DRG neurons. Pain behavior in mice was assessed using a digging assay, dynamic weight bearing and rotarod, before and after intra-peritoneal administration of the DREADD activator, Compound 21.ResultsWe show that AAV-PHP.S can deliver functional genes into the DRG neurons when injected into the knee joint in a similar manner to the well-established retrograde tracer, fast blue. Short-term activation of AAV-PHP.S delivered Gq-DREADD increases excitability of knee neurons in vitro, without inducing overt pain in mice when activated in vivo. By contrast, in vivo Gi-DREADD activation alleviated complete Freund’s adjuvant mediated knee inflammation-induced deficits in digging behavior, with a concomitant decrease in knee neuron excitability observed in vitro.ConclusionsWe describe an AAV-mediated chemogenetic approach to specifically control joint pain, which may be utilized in translational arthritic pain research.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3