Molecular control of interfacial protein structure on graphene-based substrates steers cell fate

Author:

Kumar SachinORCID,Parekh Sapun H.ORCID

Abstract

AbstractThe use of graphene-based materials (GBMs) for tissue-engineering applications is growing exponentially due to the seemingly endless multi-functional and tunable physicochemical properties of graphene, which can be exploited to influence cellular behaviours. Despite many demonstrations wherein cell physiology can be modulated on GBMs, a clear mechanism connecting the different physicochemical properties of different GBMs to cell fate has remained elusive. In this work, we demonstrate how different GBMs can be used to cell fate in a multi-scale study – starting from serum protein (Fibronectin) adsorption to molecular scale morphology, structure and bioactivity, and finally ending with stem cell response. By changing the surface chemistry of graphene substrates with only heating, we show that molecular conformation and morphology of surface adsorbed fibronectin controls epitope presentation, integrin binding, and stem cell attachment. Moreover, this subtle change in protein structure is found to drive increased bone differentiation of cells, suggesting that physicochemical properties of graphene substrates exert cell control by influencing adsorbed protein structure.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3