Abstract
AbstractAnalytical technologies based on binding assays have evolved substantially since their inception nearly 60 years ago, but our conceptual understanding of molecular recognition has not kept pace. Indeed, contemporary technologies such as single-molecule and digital measurements have challenged, or even rendered obsolete, core aspects of the conventional wisdom related to binding assay design. Here, we explore the fundamental principles underlying molecular recognition systems, which we consider in terms of signals generated through concentration-dependent shifts in equilibrium. We challenge certain orthodoxies related to binding-based detection assays, including the primary importance of a low KD and the extent to which this parameter constrains dynamic range and limit of detection. Lastly, we identify key principles for designing binding assays optimally suited for a given detection application.
Publisher
Cold Spring Harbor Laboratory