CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design

Author:

Metsky Hayden C.ORCID,Freije Catherine A.ORCID,Kosoko-Thoroddsen Tinna-Solveig F.,Sabeti Pardis C.ORCID,Myhrvold CameronORCID

Abstract

AbstractThe emergence and outbreak of SARS-CoV-2, the causative agent of COVID-19, has rapidly become a global concern and has highlighted the need for fast, sensitive, and specific tools to surveil circulating viruses. Here we provide assay designs and experimental resources, for use with CRISPR-based nucleic acid detection, that could be valuable for ongoing surveillance. We provide assay designs for detection of 67 viral species and subspecies, including: SARS-CoV-2, phylogenetically-related viruses, and viruses with similar clinical presentation. The designs are outputs of algorithms that we are developing for rapidly designing nucleic acid detection assays that are comprehensive across genomic diversity and predicted to be highly sensitive and specific. Of our design set, we experimentally screened 4 SARS-CoV-2 designs with a CRISPR-Cas13 detection system and then extensively tested the highest-performing SARS-CoV-2 assay. We demonstrate the sensitivity and speed of this assay using synthetic targets with fluorescent and lateral flow detection. Moreover, our provided protocol can be extended for testing the other 66 provided designs. Assay designs are available at https://adapt.sabetilab.org/.

Publisher

Cold Spring Harbor Laboratory

Reference15 articles.

1. A pneumonia outbreak associated with a new coronavirus of probable bat origin

2. V-Respiratory probe set (2020-01). Available: https://github.com/broadinstitute/catch/tree/master/probe-designs

3. Capturing sequence diversity in metagenomes with comprehensive and scalable probe design

4. Discovery of Bat Coronaviruses through Surveillance and Probe Capture-Based Next-Generation Sequencing

5. Wee S-L. As Deaths Mount , China Tries to Speed Up Coronavirus Testing. The New York Times. 9 Feb 2020. Available: https://www.nytimes.com/2020/02/09/world/asia/china-coronavirus-tests.html. Accessed 24 Feb 2020.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3