Influenza-induced oxidative stress sensitizes lung cells to bacterial toxin-mediated necroptosis

Author:

Gonzalez-Juarbe Norberto,Riegler Ashleigh N.,Jureka Alexander S.,Gilley Ryan P.,Brand Jeffrey,Trombley John E.,Scott Ninecia R.,Dube Peter H.,Petit Chad M.,Harrod Kevin S.,Orihuela Carlos J.

Abstract

ABSTRACTRationalePneumonia caused by Influenza A virus (IAV) co- and secondary bacterial infections are characterized by their severity. Previously we have shown that pore-forming toxin (PFT)-mediated necroptosis is a key driver of acute lung injury during bacterial pneumonia. Here, we evaluate the impact of IAV on PFT-induced acute lung injury during co- and secondary Streptococcus pneumoniae (Spn) infection.ObjectivesDetermine the impact of IAV infection on bacterial PFT-mediated lung epithelial cell (LEC) necroptosis. Determine the molecular basis for increased sensitivity and if inhibition of necroptosis or oxidative stress blocks IAV sensitization of LEC to PFT.MethodsMice and cells were challenged with IAV followed by Spn. Necroptosis was monitored by measuring cell death at fixed time points post-infection and immunofluorescent detection of necroptosis. Wildtype mice and LEC were treated with necroptosis inhibitors. Necroptosis effector molecule MLKL deficiency was tested for infection synergy. Oxidative damage to DNA and lipids as result of infection was measured in vitro and in vivo. Necroptosis and anti-oxidant therapy efficacy to reduce disease severity was tested in vivo.Measurements and Main ResultsIAV synergistically sensitized LEC for PFT-mediated necroptosis in vitro and in murine models of Spn co-infection and secondary infection. Pharmacological induction of oxidative stress sans virus sensitized cells for PFT-mediated necroptosis. Necroptosis inhibition reduced disease severity during secondary bacterial infection.ConclusionsIAV-induced oxidative stress sensitizes LEC for PFT-mediated necroptosis. This is a new molecular explanation for severe influenza-associated bacterial infections. Necroptosis inhibitors are potential therapeutic strategies to reduce IAV-primed bacterial pneumonia severity.SummaryHere we demonstrate that Influenza A virus (IAV) infection synergistically sensitizes lung cells to bacterial pore-forming toxin (PFT)-mediated necroptosis. Moreover, this contributes to the severity of lung injury that is observed during co- and secondary infection with Streptococcus pneumoniae. IAV-induced oxidative stress was identified as a key factor contributing to cell sensitization and induction of oxidative stress sans virus was sufficient to synergistically enhance susceptibility to PFT-mediated killing. Our results advance our understanding on the molecular basis of co- and secondary bacterial infection to influenza and identifies necroptosis inhibition and antioxidant therapy as potential intervention strategies.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Predominant Role of Bacterial Pneumonia as a Cause of Death in Pandemic Influenza: Implications for Pandemic Influenza Preparedness

2. Seasonal Incidence of Symptomatic Influenza in the United States

3. Influenza update: a review of currently available vaccines;P T,2011

4. Bench-to-bedside review: Bacterial pneumonia with influenza - pathogenesis and clinical implications;Critical Care,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3