Warm periods in repeated cold stresses protectDrosophilaagainst ionoregulatory collapse, chilling injury, and reproductive deficits

Author:

El-Saadi Mahmoud I.,Ritchie Marshall W.,Davis Hannah E.,MacMillan Heath A.

Abstract

AbstractIn many insects, repeated cold stress, characterized by warm periods that interrupt cold periods, have been found to yield survival benefits over continuous cold stress, but at the cost of reproduction. During cold stress, chill susceptible insects likeDrosophila melanogastersuffer from a loss of ion and water balance, and the current model of recovery from chilling posits that re-establishment of ion homeostasis begins upon return to a warm environment, but that it takes minutes to hours for an insect to fully restore homeostasis. Following this ionoregulatory model of chill coma recovery, we predicted that the longer the duration of the warm periods between cold stresses, the better a fly will recover from a subsequent chill coma event and the more likely they will be to survive, but at the cost of fewer offspring. Here, femaleD. melanogasterwere treated to a long continuous cold stress (25 h at 0°C), or experienced the same total time in the cold with repeated short (15 min), or long (120 min) breaks at 23°C. We found that warm periods in general improved survival outcomes, and individuals that recovered for more time in between cold periods had significantly lower rates of injury, faster recovery from chill coma, and produced greater, rather than fewer, offspring. These improvements in chill tolerance were associated with mitigation of ionoregulatory collapse, as flies that experienced either short or long warm periods better maintained low hemolymph [K+]. Thus, warm periods that interrupt cold exposures improve cold tolerance and fertility inD. melanogasterfemales relative to a single sustained cold stress, potentially because this time allows for recovery of ion and water homeostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3