Interneuronal mechanisms underlying a learning-induced switch in a sensory response that anticipates changes in behavioural outcomes

Author:

Pirger ZsoltORCID,László Zita,Naskar SouvikORCID,O’Shea MichaelORCID,Benjamin Paul R.,Kemenes GyörgyORCID,Kemenes IldikóORCID

Abstract

ABSTRACTHow an animal responds to a particular sensory stimulus will to a great extent depend on prior experience associated with that stimulus. For instance, aversive associative learning may lead to a change in the predicted outcomes, which suppresses the behavioural response to an otherwise rewarding stimulus. However, the neuronal mechanisms of how aversive learning can result in the suppression of even a vitally important innate behaviour is not well understood. Here we used the model system of Lymnaea stagnalis to address the question of how an anticipated aversive outcome can alter the behavioural response to a previously effective feeding stimulus. We found that aversive classical conditioning with sucrose as the CS (conditioned stimulus) and strong touch as the aversive US (unconditioned stimulus) reverses the decision so that the same salient feeding stimulus inhibits feeding, rather than activating it. Key to the understanding of the neural mechanism underlying this switch in the behavioural response is the PlB (pleural buccal) extrinsic interneuron of the feeding network whose modulatory effects on the feeding circuit inhibit feeding. After associative aversive training, PlB is excited by sucrose to reverse its effects on the feeding response. Aversive associative learning induces a persistent change in the electrical properties of PlB that is both sufficient and necessary for the switch in the behavioural output. In addition, the strong touch used as the US during the associative training protocol can also serve as a sensitizing stimulus to lead to an enhanced defensive withdrawal response to a mild touch stimulus. This non-associative effect of the strong touch is probably based on the facilitated excitatory output of a key identified interneuron of the defensive withdrawal network, PeD12.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3