Path sampling simulations reveal how the Q61L mutation restricts the dynamics of KRas

Author:

Roet SanderORCID,Hooft Ferry,Bolhuis Peter G.ORCID,Swenson David W.H.,Vreede JocelyneORCID

Abstract

AbstractThe GTPase KRas is a signaling protein in networks for cell differentiation, growth, and division. KRas mutations can prolong activation of these networks, resulting in tumor formation. When active, KRas tightly binds GTP. Several oncogenic mutations affect the conversion between this rigid state and inactive, more flexible states. Detailed understanding of these transitions may provide valuable insights into how mutations affect KRas. Path sampling simulations, which focus on transitions, show KRas visiting several states, which are the same for wild type and the oncogenic mutant Q61L. Large differences occur when converting between these states, indicating the dramatic effect of the Q61L mutation on KRas dynamics. For Q61L a route to the flexible state is inaccessible, thus shifting the equilibrium to more rigid states. Our methodology presents a novel way to predict dynamical effects of KRas mutations, which may aid in identifying potential therapeutic targets.Author summaryCancer cells frequently contain mutations in the protein KRas. However, KRas is a challenging target for anti-cancer drugs, in part because the dynamic behavior of flexible regions in the protein is difficult to characterize experimentally, and occurs on timescales that are too long for straightforward molecular dynamics simulations. We have used path sampling, an advanced simulation technique that overcomes long timescales, to obtain atomistic insight into the dynamics of KRas. Comparing the oncogenic mutant Q61L to the wild type revealed that the mutation closes off one transition channel for deactivating KRas. Our approach opens up the way for predicting the dynamical effects of mutations in KRas, which may aid in identifying potential therapeutic targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3