Novel Coronavirus 2019 (Covid-19) epidemic scale estimation: topological network-based infection dynamics model

Author:

Tang Keke,Huang Yining,Chen Meilian

Abstract

AbstractBackgroundsAn ongoing outbreak of novel coronavirus pneumonia (Covid-19) hit Wuhan and hundreds of cities, 29 territories in global. We present a method for scale estimation in dynamic while most of the researchers used static parameters.MethodsWe use historical data and SEIR model for important parameters assumption. And according to the time line, we use dynamic parameters for infection topology network building. Also, the migration data is used for Non-Wuhan area estimation which can be cross validated for Wuhan model. All data are from public.ResultsThe estimated number of infections is 61,596 (95%CI: 58,344.02-64,847.98) by 25 Jan in Wuhan. And the estimation number of the imported cases from Wuhan of Guangzhou was 170 (95%CI: 161.27-179.26), infections scale in Guangzhou is 315 (95%CI: 109.20-520.79), while the imported cases is 168 and the infections scale is 339 published by authority.ConclusionsUsing dynamic network model and dynamic parameters for different time periods is an effective way for infections scale modeling.

Publisher

Cold Spring Harbor Laboratory

Reference11 articles.

1. A novel coronavirus genome identified in a cluster of pneumonia cases—Wuhan, China 2019− 2020;China CDC Weekly,2020

2. Huang, Chaolin , et al. “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.” The Lancet (2020).

3. Wu, Joseph T. , Kathy Leung , and Gabriel M. Leung . “Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study.” The Lancet (2020).

4. Li, Qun , et al. “Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia.” New England Journal of Medicine (2020).

5. Read, Jonathan M. , et al. “Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions.” medRxiv (2020).

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3