Structural adaptation of oxygen tolerance in 4-hydroxybutyrl-CoA dehydratase, a key enzyme of archaeal carbon fixation

Author:

DeMirci HasanORCID,Tolar Bradley B.ORCID,Doukov TzankoORCID,Petriceks AldisORCID,Pal Akshaye,Yoshikuni YasuoORCID,Gomez Aharon,Saez David A.,Vöhringer-Martinez Esteban,Schwander Thomas,Erb Tobias J.,Francis Christopher A.,Wakatsuki Soichi

Abstract

AbstractAutotrophic microorganisms that convert inorganic carbon into organic matter were key players in the evolution of life on Earth. As the early atmosphere became oxygenated, microorganisms needed to develop mechanisms for oxygen protection, especially those relying on enzymes containing oxygen-sensitive metal clusters (e.g., Fe-S). Here we investigated how 4-hydroxybutyryl-CoA dehydratase (4HBD) - the key enzyme of the 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle for CO2-fixation - adapted as conditions shifted from anoxic to oxic. 4HBD is found in both anaerobic bacteria and aerobic ammonia-oxidizing archaea (AOA). The oxygen-sensitive bacterial 4HBD and oxygen-tolerant archaeal 4HBD share 59 % amino acid identity. To examine the structural basis of oxygen tolerance in archaeal 4HBD, we determined the atomic resolution structure of the enzyme. Two tunnels providing access to the canonical [4Fe-4S] cluster in oxygen-sensitive bacterial 4HBD were closed with four conserved mutations found in all aerobic AOA and other archaea. Further biochemical experiments and molecular dynamics simulations support our findings that restricting access to the active site is the key to oxygen tolerance, explaining how active site evolution drove a major evolutionary transition.Significance statementAutotrophy (primary production) was the first life strategy on Earth. Before photosynthesis (using solar energy to fix carbon dioxide), life relied on chemical reactions for energy. These chemosynthetic reactions are present in all domains of life, including archaea possessing the most energy-efficient carbon fixation pathway - the 3-hydroxypropionate/4-hydroxybutyrate cycle. This efficiency results from enzyme modifications, including enhanced enzyme stability and catalysis of multiple reactions. We reveal the first structure of aerobic 4-hydroxybutyryl-CoA dehydratase (4HBD) from ammonia-oxidizing archaea. These archaea are among the most abundant organisms on the planet, and their 4HBD active site evolved oxygen tolerance to support aerobic metabolism. This modification can provide further insight into enzyme evolution on early earth, as photosynthesis developed and began oxygenating the atmosphere.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3