Author:
Cortez Jessica T.,Montauti Elena,Shifrut Eric,Zhang Yusi,Shaked Oren,Xu Yuanming,Roth Theodore L.,Simeonov Dimitre R.,Zhang Yana,Chen Siqi,Li Zhongmei,Vogel Ian A.,Prator Grace Y.,Zhang Bin,Lee Youjin,Sun Zhaolin,Ifergan Igal,Van Gool Frédéric,Bluestone Jeffrey A.,Marson Alexander,Fang Deyu
Abstract
AbstractRegulatory T cells (Tregs) are required to control immune responses and maintain homeostasis but are a significant barrier to anti-tumor immunity1. Conversely, Treg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of pro-inflammatory properties2, can promote autoimmunity and/or facilitate more effective tumor immunity3,4. A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and cancer. Despite improved functional genetic tools that now allow for systematic interrogation, dissection of the gene regulatory programs that modulate Foxp3 expression has not yet been reported. In this study, we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse Tregs and applied this technology to perform a targeted loss-of-function screen of ∼490 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We discovered several novel modulators including ubiquitin-specific peptidase 22 (Usp22), Ataxin 7 like 3 (Atxn7l3) and ring finger protein 20 (Rnf20). Members of the deubiquitination module of the SAGA chromatin modifying complex, Usp22 and Atxn7l3, were discovered to be positive regulators that stabilized Foxp3 expression; whereas the screen suggested Rnf20, an E3 ubiquitin ligase, is a negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 protein and created defects in their suppressive function that led to spontaneous autoimmunity but protected against tumor growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient Tregs could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in Tregs. These results reveal novel modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for Treg immunotherapies for cancer and autoimmune disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献