Cell-to-cell and genome-to-genome variability of Adenovirus transcription tuned by the cell cycle

Author:

Suomalainen MaaritORCID,Prasad VibhuORCID,Kannan Abhilash,Greber Urs F.ORCID

Abstract

AbstractIn clonal cultures, not all cells are equally susceptible to virus infection. Underlying mechanisms of infection variability are poorly understood. Here, we developed image-based single cell measurements to scrutinize the heterogeneity of adenovirus (AdV) infection. AdV delivers, transcribes and replicates a linear double-stranded DNA genome in the nucleus. We measured the abundance of viral transcripts by single-molecule RNA fluorescence in situ hybridization (FISH), and the incoming ethynyl-deoxy-cytidine (EdC)-tagged viral genome by copper(I)-catalyzed azide-alkyne cycloaddition (click) reaction. The early transcripts increased from 2-12 hours, the late ones from 12-23 hours post infection (pi), indicating distinct accumulation kinetics. Surprisingly, the expression of the immediate early transactivator gene E1A only moderately correlated with the number of viral genomes in the cell nucleus, although the incoming viral DNA remained largely intact until 7 hours pi. Genome-to-genome heterogeneity was found at the level of viral transcription, as indicated by colocalization with the large intron containing early region E4 transcripts, uncorrelated to the multiplicity of incoming genomes in the nucleus. In accordance, individual genomes exhibited heterogeneous replication activity, as shown by single-strand DNA-FISH and immunocytochemistry. These results indicate that the variability in viral gene expression and replication are not due to defective genomes but due to host cell heterogeneity. By analyzing the cell cycle state, we found that G1 cells exhibited the highest E1A expression, and significantly increased the correlation between E1A expression and viral genome copy numbers. This combined image-based single molecule procedure is ideally suited to explore the cell-to-cell variability in viral infection, including transcriptional activators and repressors, RNA splicing mechanisms, and the impact of the 3-dimensional nuclear topology on gene regulation.Author SummaryAdenoviruses (AdV) are ubiquitous pathogens in vertebrates. They persist in infected people, and cause unpredictable outbreaks, morbidity and mortality across the globe. Here we report that the common human AdV type C5 (AdV-C5) gives rise to considerable infection variability at the level of single cells in culture, and that a major underlying reason is the cell-to-cell heterogeneity. By combining sensitive single molecule in situ technology for detecting the incoming viral DNA and newly synthesized viral transcripts we show that viral gene expression is heterogeneous between infected human cells, as well as individual genomes. We report a moderate correlation between the number of viral genomes in the nucleus and immediate early E1A transcripts. This correlation is increased in the G1 phase of the cell cycle, where the E1A transcripts were found to be more abundant than in any other cell cycle phase. Our results demonstrate the importance of cell-to-cell variability measurements for understanding transcription and replication in viral infections.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3