Ecological niche models as hypothesis generators of functional genetic differentiation and potential local adaptation in a Mediterranean alpine ecosystem

Author:

Morente-López JavierORCID,Kass Jamie M.ORCID,Lara-Romero CarlosORCID,Serra-Diaz Josep María,Soto-Correa José Carmen,Anderson Robert P.,Iriondo José MaríaORCID

Abstract

AbstractGeographically disparate populations within a species’ range may show important differences including variation in ecological, demographic, genetic and phenotypic characteristics. Based on the Center-Periphery Hypothesis, it is often assumed that environmental conditions are optimal in the geographic center of the range and stressful or suboptimal at the periphery, implying ecological marginality is concordant with geographic periphery. But this assumption has been challenged as geographical and ecological gradients are not necessarily concordant. The conservation value of populations inhabiting environmentally marginal areas is still under debate and is closely related with their evolutionary potential. Strong selective pressures caused by stressful conditions may generate novel adaptations in marginal areas, conferring these populations distinct evolutionary potential. But populations inhabiting marginal areas may also show reductions in neutral and adaptive genetic diversity via drift and inbreeding.In this work we explore the potential of ecological niche models (ENMs) to identify environmentally optimal and marginal areas, as well as the principal putative selective pressures likely to act. To do so, we built a carefully parameterized ENM of Silene ciliata, a dominant plant species of Mediterranean alpine habitats. Complementarily, we selected wild populations inhabiting contrasting environmental conditions and carried out common garden experiments to detect genetic differentiation among populations associated with functional traits. With the resulting information, we tested whether environmentally marginal populations defined by the ENM had genetically differentiated phenotypes that are potentially adaptive and, thus, of conservation value.We found genetically based phenotypic differentiation of phenological traits between populations inhabiting areas identified by the ENM as marginal and optimal, as well as between populations with different habitat suitability values. Results supported ENMs as powerful tools for determining environmental marginality and identifying selection pressures, and thus also as hypothesis generators for divergent selection. Furthermore, genetically based phenotypic differentiation found underlines the potential adaptive value of populations inhabiting marginal areas. The approach developed here provides a theoretically justified and practical way to study adaptive processes and provide insights about the conservation value of marginal populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3